
linux - Why is my crontab not working, and
how can I troubleshoot it?

This is a community wiki, if you notice anything incorrect with this answer or have

additional information then please edit it.

First, basic terminology:

cron(8) is the daemon that executes scheduled commands.

crontab(1) is the program used to modify user crontab(5) files.

crontab(5) is a per user file that contains instructions for cron(8).

Next, education about cron:

Every user on a system may have their own crontab file. The location of the root and

user crontab files are system dependant but they are generally below /var/spool

/cron.

There is a system-wide /etc/crontab file, the /etc/cron.d directory may contain

crontab fragments which are also read and actioned by cron. Some Linux distributions

(eg, Red Hat) also have /etc/cron.{hourly,daily,weekly,monthly} which are

directories, scripts inside which will be executed every hour/day/week/month, with

root privilege.

root can always use the crontab command; regular users may or may not be granted

access. When you edit the crontab file with the command crontab -e and save it,

crond checks it for basic validity but does not guarantee your crontab file is correctly

formed. There is a file called cron.deny which will specify which users cannot use cron.

The cron.deny file location is system dependent and can be deleted which will allow all

users to use cron.

If the computer is not powered on or crond daemon is not running, and the date/time

for a command to run has passed, crond will not catchup and run past queries.

crontab particulars, how to formulate a command:

A crontab command is represented by a single line. You cannot use \ to extend a

command over multiple lines. The hash (#) sign represents a comment which means

anything on that line is ignored by cron. Leading whitespace and blank lines are

ignored.

Be VERY careful when using the percent (%) sign in your command. Unless they are

escaped \% they are converted into newlines and everything after the first non-escaped

% is passed to your command on stdin.

There are two formats for crontab files:

1 von 4

User crontabs

Example of job definition:

.---------------- minute (0 - 59)

| .------------- hour (0 - 23)

| | .---------- day of month (1 - 31)

| | | .------- month (1 - 12) OR jan,feb,mar,apr ...

| | | | .---- day of week (0 - 6) (Sunday=0 or 7)

| | | | |

* * * * * command to be executed

System wide /etc/crontab and /etc/cron.d fragments

Example of job definition:

.---------------- minute (0 - 59)

| .------------- hour (0 - 23)

| | .---------- day of month (1 - 31)

| | | .------- month (1 - 12) OR jan,feb,mar,apr ...

| | | | .---- day of week (0 - 6) (Sunday=0 or 7)

| | | | |

* * * * * user-name command to be executed

Notice that the latter requires a user-name. The command will be run as the named

user.

The first 5 fields of the line represent the time(s) when the command should be run.

You can use numbers or where applicable day/month names in the time specification.

The fields are separated by spaces or tabs.

A comma (,) is used to specify a list e.g 1,4,6,8 which means run at 1,4,6,8.

Ranges are specified with a dash (-) and may be combined with lists e.g. 1-3,9-12 which

means between 1 and 3 then between 9 and 12.

The / character can be used to introduce a step e.g. 2/5 which means starting at 2 then

every 5 (2,7,12,17,22...). They do not wrap past the end.

An asterisk (*) in a field signifies the entire range for that field (e.g. 0-59 for the minute

field).

Ranges and steps can be combined e.g. */2 signifies starting at the minimum for the

relevant field then every 2 e.g. 0 for minutes(0,2...58), 1 for months (1,3 ... 11) etc.

Debugging cron commands

Check the mail! By default cron will mail any output from the command to the user it is

running the command as. If there is no output there will be no mail. If you want cron to

send mail to a different account then you can set the MAILTO environment variable in

the crontab file e.g.

MAILTO=user@somehost.tld

2 von 4

1 2 * * * /path/to/your/command

Capture the output yourself

1 2 * * * /path/to/your/command &>/tmp/mycommand.log

which captures stdout and stderr to /tmp/mycommand.log

Look at the logs; cron logs its actions via syslog, which (depending on your setup) often

go to /var/log/cron or /var/log/syslog.

If required you can filter the cron statements with e.g.

grep CRON /var/log/syslog

Now that we've gone over the basics of cron, where the files are and how to use them

let's look at some common problems.

Check that cron is running

If cron isn't running then your commands won't be scheduled ...

ps -ef | grep cron | grep -v grep

should get you something like

root 1224 1 0 Nov16 ? 00:00:03 cron

or

root 2018 1 0 Nov14 ? 00:00:06 crond

If not restart it

/sbin/service cron start

or

/sbin/service crond start

There may be other methods; use what your distro provides.

cron runs your command in a restricted environment.

What environment variables are available is likely to be very limited. Typically, you'll

only get a few variables defined, such as $LOGNAME, $HOME, and $PATH.

Of particular note is the PATH is restricted to /bin:/usr/bin. The vast majority of

"my cron script doesn't work" problems are caused by this restrictive path.

If your command is in a different location you can solve this in a couple of ways:

Provide the full path to your command.

1 2 * * * /path/to/your/command

1.

Provide a suitable PATH in the crontab file

PATH=/usr:/usr/bin:/path/to/something/else

1 2 * * * command

2.

3 von 4

If your command requires other environment variables you can define them in the

crontab file too.

cron runs your command with cwd == $HOME

Regardless of where the program you execute resides on the filesystem, the current

working directory of the program when cron runs it will be the user's home
directory. If you access files in your program, you'll need to take this into account if

you use relative paths, or (preferably) just use fully-qualified paths everywhere, and

save everyone a whole lot of confusion.

The last command in my crontab doesn't run

Cron generally requires that commands are terminated with a new line. Edit your

crontab; go to the end of the line which contains the last command and insert a new line

(press enter).

Check the crontab format

You can't use a user crontab formatted crontab for /etc/crontab or the fragments in

/etc/cron.d and vice versa. A user formatted crontab does not include a username in the

6th position of a row, while a system formatted crontab includes the username and runs

the command as that user.

I put a file in /etc/cron.{hourly,daily,weekly,monthly} and it doesn't run

Check that the filename doesn't have an extension see run-parts

Ensure the file has execute permissions.

Tell the system what to use when executing your script (eg. put #!/bin/sh at top)

Cron date related bugs

If your date is recently changed by a user or system update, timezone or other, then

crontab will start behaving erratically and exhibit bizarre bugs, sometimes working,

sometimes not. This is crontab's attempt to try to "do what you want" when the time

changes out from underneath it. The "minute" field will become ineffective after the

hour is changed. In this scenario, only asterisks would be accepted. Restart cron and try

it again without connecting to the internet (so the date doesn't have a chance to reset to

one of the time servers).

4 von 4

